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REPORT SUMMARY

Research is undcr ey in several areas of collision phenomena relevant
to molecular laser operation. Due to the diverse nature of these problems, &
multi-faceted approach has been taken. This has led to the study of both
specific and model molecular systems in order to understand the physical
phenomena involved, We believe the ensuing results have important implica-
tions for the development of high-power, efficient molecular lasers. In
addition, a better overall fundamental understanding of molecular ccllisions
has been gained and this should have application to a number of other rzlaxa-
ticn phenomena, The remainder of this report consists of three manuscripts

detailing specific aspects of this research performed in the past year. A

brief summary of these results is given below,

1, Kinetic Analysis of the CO Laser System with Updated Rate I-formation

In collaboration with Professor E, Fisher, Wayne State Univorsity, we
have undertaken a thorough examination of the kinetics in the low-temperature
C0~He discharge system. This system has been suggested as an efficient
source of high-power infrared laser radiaticn. Our present research focuses

on an analysis of the observed CO population distribution and its implica-

recently calculated CO rate constants which show significant scaling differ-
ences with the older semiempirical models, The attached report presents a

simple and useful courrelation of the newly available rate information, This
correlation is presently beilng vsed in CO laser analysis and the preliminary

conclusion is that the new rate scalings make a substantial improvement in

nc for collisional rate behavior, This study has made important use of our
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explaining the observed CO population. It is our ultimat: goal to turn this
information around and suggest design improvements for operating laser

systems, Further research in this area will be pursued in the coming year.

2, dodel Studies to Determine the Key Molecular
Parameters Contrelling Collision Behavior

A variety of model calculations have bheen performed to bring out key
physical effects entering inte molecular collisions. A prime corcern is the
determination of temperature and quantum number scaling behavior. This infor-
mation is very important in laser analysis and other general relaxation
phenomena, A new and more accurate computer code has been written to replace
our earlier version [J, Chem., Phys. 64, 5291 (1976)]. Calculations are

nresently under way and will be report d at a later date,

3. Stochastic Theg;y for Molecular Collisions

In the gast few years the development of powerful effective Hamiltonian
methods has areatly simplified molecular collision calculations, Indeed many
previously impossible problems are now manageable with these methods and we
have applied lnem in the research of this contract., However, the present
availatle theory has lirmitations, particularly concerning the size of problem
that cau be handled, Th.s restriction is very important in meny practical
applications such as lasers, Therefore, we have undertaken a new approach
based on stochastic theory to bandle large (many-quantum level )} collision
problens, 'The attached manuscript presents the stochastic theory formulation
for vibration-rotation collision ctate changes. Tne papar discusses the

physical content of the new simplified theory and suggests numerical methods
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for its implementation, Applications are under way and will be pursued

further in the coming year.

&, vibration~Rotation Collisiorns in H,-H,

The H,-H, system provides a valuable prototype example for many
collisjional effects of importance in lasing systems. Detailed three~
dimensional quantum mechanical calculations were performed om this system
with emphasis on the exchange of rotational and vibrational quanta between
the meclecules, Collisional flux mans were studied to determine the referred
pathways for vibration-rotation transitions, This study has led to valuable
insight into the collision of identical molecules, The details of this work
are included in the attached manuscript, It would be valuable to extend this
study to the collision of non-identical molecules such as D,-H,, since such
situations commonly arise in many applications such as lasers, Turther con-

sideration of this work will be treated in the coming year,
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ABSTRACT

A new correlation of the recent theoretical CO-He vibration-transia-
tion rates by Verter and Rabitz is presented. Using a functional form
suggested by the SSH theory, a simple analytical correlation function is
obtained for 3000°K > T > 100°K and quantum state change Ai = 1,2,3. In
addition, a semi-empirical formula for Ai = 1 rates is obtained by fine
tuning the correlating formula to agree with the available experimental
1 to 0 rates. In this fashion optimal use was made of the best available
theoretical ard experimental information. The result is compared with

rates estimated by other procedures.
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CORRELATION OF VIBRATION-TRANSLATION
RATES FOR CO-He

by
S. H. Lam* and H. Rabitz**

1. INTRODUCTION

In the study of vibrational kinetics of CO laser systems, quantitative
information on various vibrational rates are required. A reexamination of
the CO V-T (vibration-transiation) information at this time is appropriate
because of its importance in laser studies and because new theoreticall and
experimental resu]ts2 have recentiy become available. In the present paper,
we shall be solely concerned with V-T rates for CO-He ¢ollisions, particu-
larly at low temperatures T and high vibrational quantum numbers i. Our
objective here is to construct and present a simple semi-empirical formula
for the estimalion of these rates based on the best theoretical and experi-
mental information at our disposal at this time. The proposed semi-empirical
formula, in addition to being of practical usefulness, exhibits certain
general features where are intecasting theoretically and are expected to be

present in other similar systems.

*
Department of Aerospace and Mechanical Sciences, Princeton University,
Pringgton, N. J.
Alfred P. Sloan Fellow, Camille and Henry Dryfus teacher scholar,
lepartment of Chemistry, Princeton University, Princeton, N. J.
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We shall denote kVT(i,T;Ai) to be the de-excitation rate of a CO
iclecule from i to i-Ai at temperature T. The corresponding Ai to O
rates shall be denoted simply by kxg,o(T).

Experimental data for KYTO(T;exp} is relatively abundant, covering
a wide range of temperature.2’3’4 Experimenial data for i#1 rates is
generally scarce, and for CO-He the totality of data appears to consist
of only 5 points obtained by G. Hancock and Smith5 (for i1=9,10,11,12,13).

Thus, estimation of rates for i>1 and Air. in practical applications must

rely primarily on guidance from theoretical considerations.

IT. THE SSH THEORY AND THE BR ESTIMATION PROCEDURE

The vibrational levels E5 of CO may be written approximately as

fullows
£ = ikev [1-xe(i-1)], i 0,1,2,...

where ev = 3123°K is the characteristic vibrational temperature and

3 is the anharmonicity which, inspite of its smallness,

Xe = 5.98 x 10
exerts a strong influence on the V-T rates.
The basic theory on vibrational rates was developed in a sequence of

6,7

two papers by Schwartz, et ai. commonly referred to as the SSH theory.

The SSH result for Ai=1 V-T rates can be written in the following form:

KT(,T30) = wy (D (DA (y,7) (2.1)

where w](T) carries the dimension of kVI and contains mainly the total
collision rate. The function 2](1) is proportional to the square of the

appropriate oscillator matrix element which, for anharmonic oscillators,

Aoy et




B
: | ‘
:
Eg A-3 -
|
& can be approximated by
{
 : oL
g CUU R ey (2.2)
1]
b and AgT(y,T) is the so-called adiabaticity factor. The parameter y is
N defined by
: y = y6,T) = (2%} ¥ (2.3)
_f‘ where 6 depends on molecula, parameters and the assumed interaction
potential. For a repulsive exponential interaction potential with
characteristic length ¢, 6 is given by
B = 16n“u22k03/h2 ' (2.4)

where u is the reduced mass of the collision. Using the analytical result

of Jackson and Mott8 and approximately accounting for 3-dimensionality
effects7, the SSH’ theory yields the following expression for A¥T(y,T):
AE§
AT (y,1) = e & £(y,2) (2.5)

1

where AE§ = (1—2xe1.)k6V is the energy defect and f(y,z) is the thermal

averaging integral

f(y,z) =‘}r ™% 1(g3y,2)de (2.6)
VAT

with l}(sinh p J;z})(sinh z \/c”,- :-;Z)

- -— 2'7)
I(E;,Yaz) - : / (
[cosh o -[{,+ %}i - CcCsh z4/%- gz_x]‘

and 2 = 2(T)
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In the limit as z ~ », I(£,y,») reduces to sinh” y/\f" and f(y,=)

sacomes

(y,») =f®e-€(sinh'2(y/\[§))d£ (2.9)

0
The function f(y,=) has been numerically evaluated by Keck and Carrierg

. who suggesc the followiag curve-fitting formula

f(y,o) ¥ Frely), 0<y <20, (2.10)
Fely) = 1/2 (3-¥/3) -2/3 (2.11)
KC
Eg. (2.11) is commonly preferred over the steepest-descent result,
-3v2/3
8(m y7/3)]/3e 32/ » (y>>1), because of its uniform validity in the
indicated range.
10

An estimation procedure for V-T rates, apparently first used by Bray

for high temperature and later more extensively developed by R1ch]]

co—workers]é, for low temperature proceeds as follows. First, the function

{y) is adopted to represent f(y,z). The value of 6 (or &) is either
estimated or taken from tabulated data (e.g., Herzfeld and Litovitzl3).
The factor w](T) is then determined empirically by fitting tne resulting
formula for i=1 to the relatively abundant experimental data on k¥T0(T;exp).
If additional 1 # 1 data are available, they are used as a consistency
check. We shall cail this method the BR estimation procedure.

Note that the BR estimation procedure relies primarily on FKC(y) for

the major i and T scaling, and the final forwula contains a single molec-

ular parameter, 6. A large number of kinetic calculations have adopted

this procedure because of its simplicity and because of the absence of

any better estimates.

.S e e



Recently, Verter and Rabitz] (VR) performed extensive numerical

talculations of V-T rates for CO-He rollisions over the range 3000°K
>T>100° and T < 1 < 44, including 1 =1, 2, 3. These ab initio
calculations provide for the first time detailed.theoretical information

hitherto unavailable. Althouah further refinements in the calculations

are possible (at considerable additional expense), these results are

believed to be the best theoretical CO-He rates presently available.
Verter and Rabitz correlated their computed results in the follow-

ing form:
VT : 1
K (1,T541) = i exp 2, Bp(T,a)i" (2.12)
n=0

To cover the range 3000° > T > 100°K in 100°K increments for Ai = 1, 2, 3,
¢ total of 450 coefficients (Bn's) were needed. In this form the VR
results are somewhat cumbersome to use and difficult to generalize or
interpolate. Comparison of VR and experi.ental k¥T0(T) rates shows agree-
ment with a factor of about 5 at high temperatures and a factor of about

2 at Tow temperatures. Comparison between the VP rates and the commonly
used BR rates shows substantial differences, particularly at high values

of i and lTow temperatures. These differerces can have significant effects

on kinetic modelling in CO laser studies as shall be pointed out later.

IIT., NEW CORRELATION OF THE VR DATA

Motivated by Eq. {2.1), we propose the foliowing expresion as an

alternative to Eq. (2.12):

KT, T5a0) = 0 (5,100 T F L(y,) (3.1)




yhere k](i) remains as given by Eq. (2.2) and %5 %3 are chosen %o be,b
22(1) = 2](i)2](1-]), 13(1) = z](i)z](i-l)zl(i-Z) (3.2)

The function FAi(y,T) is to be chosen under the guiding principle that
wAi(i,T) should have the minimum i dependence. We shall retain y as
'defined by Eq. (2.3) as the primary correlatior variable. The parameter
8 affects y only by a constant facior and need not be spacified in the
correlation procedure. In fact, we shall presently determine an effec-
tive 6 as a by-product of our correlations.

Inspection of the VR data appropriately reduced and piotted immedi-
ately indicates that the Ai = 1 high temperature data can indeed be
roughly correlated by FKc(y) provided we choose 6 = 2.64 x 10%, Fixing
6 at ....: value {which corresponds tc 2 = 0.3 R), the following form
for FAi(y,T) is proposed.

e~y , o~ Wx-0by (y-yx)
1+e a]°ﬁ()’-a27 ]+bzeb3[.Y".Y(],T)]

FolnT) =3 (3.3)

where o, ays 2y, b], b2, b3, and y, are curve-fitting parameters. The
first term is suggested by FKC(y) and dominates in the y < y, region.
The second term dc inates in the y > y, region. The parameters are

found to be -

a(di=1) = 2/3, a4i=2) = 1.03, «fai=3) = 1.3

a, = (2/3)%, a, =5.5
1 2
24 (3.4)
y, = 21.5 b]=c,525(1+-7—)
2
_ (280 _ 150
by = (5°) > by =22
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Note that 6 = 2.64 x 10%° °K is obtained as a consequence of setting
o{ai=1) = 2/3.

Using this specific choice of FAi(y’T)’ the values of “Ai(i’T) are
then computed and typical distributions are shown in Fig. 1. It is seen
that the resulting wAi(i,T)'s generally do exhibit a weak i dependence.
As shali be seen more clearly later in Fig. 3, the exceptional cases
are w](],100°K), mz(i<10, T<400°K), and w3(i<10, T<1000°K) where the
correlation hecomes locally poor. It is believed that for Ai = 3 the
form for 23(1) assumed in Eq. (3.2) is mainly responsible for these
large local aberations. For the other cases, the local aberations may
be reduced by fine tuning the parameters b2 and b3. Since the original
VR data for these cases is likely to have the lsrgest numerical errors
(noise), such refinements were not considered meaningful or worthwhile
at this time.

Fig. 2 shows'&ii(T) vs T where BAi(T) is the averaged value of u,;
(10<i<40,T). Fig. 3 shows FAi(y,T) as given by Eq. (3.3) vs y as solid
Tines. The original VR data represented by FAi(y’T)wAi(i’T)/EAi(T) may
also be displayed on this diagram. However, because of the s<ele of
the diagram, only the data with “A1(*’T)/5A1(T) substentially different

from unity will deviate from the solid lines and is shown by the dotted lines.

1V. INCORPORATION OF EXPERIMENTAL DATA FOR Ai =1

The weak "scatter" of w](i,T) about Z&(T) is comparable to the
scatter of the original VR calculations. Thus we may justifiably replace
w](i,T) in Eq. (3.1) by G;(T) and consider the resulting formula as an

alternative to Eq. (2.12) when Ai = 1.




Borrowing the idee from the BR estimation procedure, we propose the

following semi-empirical formula for kVT(l LR E
AE1

VT( 2AT

K7 (1:Ts15emp) = wy(Tsexp)2y (1) Fily,T) (4.1)

The funct’on w](T;exp) is to be determined by fitting the available
experimental data on kVTO(T;exp) while F (y,T) determined from the VR

theory is retained. Fig. 4 is a conventional plot of lcg kYTO vs T ]/3

showing the high temperature experimental dats of Millikan and Wh1t83

4 and

and the moderate and Tow temperature data of Miller and Millikan
the recent data of Drozdoski, Young, Bates, and Hancock.2 Also shown
are the original VYR rates.

Using the experimental data shown in Fig. 4, the values of w](T;exp)
are computed and are shown in Fig. 5. Also shown are m](],T) and ZH(T)

for comparison purposes. The w](T;exp) data can adequateiy be fitted by

2

](T exp) = A(Bgo) 100°K < T < 800°K (4.2a)
1/3
2 a (800\ 800°K < T < 3000°K (4.2b)

where

>
it

6 x 103 cm3/sec-molecule

t

1 x 1071 %m?®/sec-mole.

In the indicated temperature range, Eqs. (4.1) and (4.2) is the proposed
semi-empirical CO-He V-T rate formula wiich contains the most up-to-date
theoretical and experimental information availabie at this time.

Fig. 6 shcws kVT(i,T;l;emp) and the corresponding BR rates (using

8=2.64 x 10°K) for T = 100°K, 200°K, and 300°K. Also shown are the
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five data points of G. Hancock and Smith5 which are believed to have

been obtained at room temperature. Unfortunately, these data points do
not discriminate between th2 two rate estimates which diverge from each
other substantially only at higher vibrational levels. Thus, definit’ve
confirmation of the VR rates must await additional discriminating expevi-

mental data to become avaiiabie.

V. DISCUSSION

We have obtained a rew correlation of the theoretical VR rates for
CO-He in a form suggested by the SSH theory. For the Ai = 1 case, we
have further proposed to replace w](i,T) by w](T;emp) given by Eq. (4.2)
so that the resulting semi-empirical formula, Eq. (4.1), reproduces the
experimental data on kyfo(T;exp).

Using harmonic oscillator wave functions, the SSH theory showed
that the square of the matrix elements can be written as l](i) -1,

2.(i) = i(i-1). Our choice of zAi(i) here rests entirely on analogy,

o
accounting for the effects of anharmonicity only through the denominator

of ¢q. (2.2). We believe that the poor correlation of the low i data

1

for the Ai = 3 case is primarily a reflection of the inadequacy of our
choice of 23(1).

In addition to the constant 6 used in the definition of y, the
function FAi(y,T) contains seven curve-~fitting parameters: a, 15 8y,
y*, b], b2, b3. The values of a and 6 are not independent. Ry setting
a(l) = 2/3 and requiring F](y,T) to aqree with FKC(y) for 10 < y < 20,
we deduce 6 = 2.64 x 10° °K, yielding from Eq. (2.4) an effective inter-

[o]
action length 2 = 0.3 A which is found to be in good agreement with the
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actual interacticn potential (in the strongly repulsive wall region)

SO A PSR

used in the original VR theory. The other curve-fitting parameters

are probably also related to the interaction potential used, but such

relationships have not been identified.

LY T I AT R

Using 0 = 2.64 x 10% °K fcr CO-He collisions, the values of y for

the temperatures range considered covers the range 57 > y > 5. Since

9 is a valid approximation to f(y,z)

T
ool ailunlui B oy sl i T

FKC(y),as given by Keck and Carrier,

Ry Y/ AT

only for y < 20, we have numerically computed f(y,z) as given by Egs.

(2.6) and (2.7) Our results show that for y < 20,f(y,z) is indeed
accurately represented by FKC(y). For y > 20, f(y,z) exhibits a weak
T dependence similar to F](y,T), but diverges rapidly from it with in-
creasing y. .

An interesting feature of the VR rates is the distinctly more rapid
variation of FAi(y’T) with y for the first few levels when y >y = 21.5.
Ignoring the Ai = 3 case which was discussed earlier, this distinctive
“boundary layer" structure for low values of i can be clearly seen in
Fig. 3. This bchavior is accounted for by the denominator of the second
cerm in Eg. (3.3), ard the parameters b2(T) and b3(T) 1ere chosen to fit
the Ai = 1, 100°K and 200°K data. Since no such behavior is anticipated
by the SSH theory, we have carefully examined the possibility of syste-
matic numeric:l errors in the original VR calculations and concluded
that it is uniike.y. However, because vf the complexities of the nuner-
ical procedures u~ed, this possibility, although remote, cannot be
entirely ruled out.

Except for this boundary layer structure (for y > y,), the VR data

is qualitatively consistent with the interpretation that the effective
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value of £ is a variable and decreasing function of the "energy defect"
of the collision.

wWhile the reasonable agreciment between the original VR rates with

VT
1,0

that ro definitive verifications at high values of i are yet available.

ky {T;exp) as shown in Fig. 4 is encouraging, it must be emphasized

The consistency check with the data of G. Hancock and Smith5 is incon-
ciusive. Nevertheless, it is clear that the semi-empirical rates

(Eqs. (4.1) and (4.2) proposea here rest on firmer grounds tnan

the BR rates. Recently, Lordi and Rich]4 measured CO popuiation
distributions in a CO-A laser system at 300°K up to i = 35 and compared
their data with Linetic calculations. It was reported that calculations
using BR rates yielded generally poor results, but calculations using
the ad hoc assumption of replacing FKC(y) by a constant yielded much
more reasonable results. Since the VR rates exhibit a generally weaker
i dependence than the BR rates (see Fig. 6), their observation lends
some support to the VR rates. The full implications of these new rates

on CO laser caiculations will be discussed in a Tater publication.
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Fig. 1 Typical distributions of mAi(i,T) as a function of 1.
A flat distribution indicates good correlation.
: Fig. 2 BAi(T) #5 a function of T where BAi(T) is wys(1,7)

ke

average.i over the levels.

Fig. 3 The solid lires are FAi(y’T)' The dotted lines are
FAi(y°T)wAi(i’T)/aAi(T) which represent the original
VR data. Because of the scale of the diagram, only
the data with wAi(i’T)/BAi(T) substantialiy different
from unity is shown.

Fig. 4 Comparison of theoretical and experimerial rites.

Fig. 5 w](T,exp), EH(T) and v (1,T) as a function of T. The
solid dots are the recent data of Drozdoski, Young,
Batés, and Hancock. The open circles are E](T). The
crosses are w](l,T). The solid curve is the data of
Millikan and White. Straight line segments are given
by Egs. (4.2).

Fig. 6 Comparison of present semi-empirical rates with BR
rates at low temperature. Note that the BR rates
show a much stronger 1 dependerice.
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;- ABSTRACT

(Three-dimensional quantum mechanical calculations in the effective
potential approximétion have been made on the para-hydrogen system. At low
temperatures vib-rotationally inelastic collisions were examined while
Breathing sphere calculations were used to probe the high-temperature regime,

It was found that simultaneous vibratfonal and rotational processes contribute

to the overall mechanism of vibrational relaxation, Both intra- and inter-
molecular energy transfer is possible in the present calculation, and the
corresponding cross sections are examined in detail, Rates are calculated

from the cross sections and compared with experiment.
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I. INTRODUCTION

Processes involving energy transfer in bimolecular collisions are
frequently categorized as rotation-translation (R-T), vibration-translation
(V-T), vibration-vibration (V-V) and vibration-rotation-translation (V-R-T).
A study of a system of gaseous molecules must, if it is to be complete, focus
simultaneou=ly on all thise modes of energy transfer. It 1s also most
deéirable to treat tiie problem within a quantum mechaiical framework.
Vibrational excitation and de-excitation in collisicns is an important process
in gas laser systems and relaxation phenomena,” R:search or the contributing
physical factors in such energy transfer is desirible, Understanding the role
of rotational inelasticity accompanying the vibrational inelasticity is also
believed crucial in interpreting some relaxaticn phenomena, The analysis of
the scattering properties of a system demands a reasonably accurate knowledge
of the interaction potential in order to prorerly reproduce the dynamics, As
a practical matter, the computational expense must remain within a reasonable
limit if detailed analysis is to be possible,

In this context, the para-hydrogen system 1s an attractive one with a
view to examining the processes mentioned above. A study of hydrogen is
useful in itself and may provide a model for more complex systems., The purely
vibrational problem has been approached in the distorted wave formalism by
Calvert,2a who calculated the ratio of de-excitation rates for H;-H, and H,-D,.
A collinear study of near resonant V-V processes "9~Dy collisions was made
by Alexauder2b using a variety of intermolecular potentials, includirg the
one used in this study. More recently rotations and vibrations have been

2¢

included in a three-dimensional semiclassical study by Fisher and Billing.

We have chosen to solve the quantum scattering equations for this syutem in
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the effective potential (EP) approximation,”  With this approach the

dimensionality of the coupled equations that must be solved is greatly reduced
in comparison to the exact-close-coupled equations.3b In this fashion the
large numbers of channels involved in a vibrotational calculation can be
manageably handled, The shock tube experiments ox :lefer and Lutz4 and Dove
and Teit:elbaum5 as well as the low-temperature stimulated Raman scattering
experiments of Ducuing et 51.6 for H, allow a comparison with some of the
calculations,

We have examined the para-H, —para-H, collisfon from two points of view.
Firstly, the molecules are treited as two breathing spheres (i.e., they are
restrictea to the rotational state J=0), In the second case the coupled
vibration-rotation equations are solved in the EP approximation; the effect
of including rotational sub-levels on the ground and first excited vibrational
levels was then studied, This latter work serves to complement the partial
plctures of purely rotational and breathing sphere calculatlons.

Section II reviews the theoretical framework pertinent to this work.

In Section III the intermolecular potentisl is discussed, Sections IV and V
examine the cross section aund rate bensvior of the V-T and V-V and V-k-T
procésses as well as the associated relaxation phenomena, The final Section

VI draws conclusions from the study,
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II. THEORETICAL FRAMEWORK

The EP approximation3 has been extensively discussed earlier, both with
regard to theoretical development7 and practical validity.8 The formulation7’9
is extended to the case of two identical vib-rotors in the present treatment.

The Hamiltonian of this system is
H = T+H(int) +V (1)

where T 4s the kinetic energy operator, V the intéraction potential, and
Ho (int) the unperturbed vib-rotational Hamiltonian operator of the colliding
molecules. Effective eigenstates of Ho(int) are written as |n;j,n,3,),

with niji describing the vibrational and rotational quantum states of
molecule 1=1,2, The interaction potential V {s usually expanded in a sum

of spherical harmonics over the orientation of angles of the two molecules

5> 3 3 o
V(r;,ry,R) = ZJ E: Azlzzz(rlrzR)<£1m1£2mz!51‘zlﬁo
21004  mymgm

Yzlml

A A * A
(r0) ¥, o, (72) ¥, (R) (2)
where AZ 4.4 Bare Lhe erpansion coefficients, ?1 and ?2 define the

1¥2
vibrational coordinates of the two molecules in the space-f’ :ed coordinate
system, &nd 'E is the victor joining the centers of mass of the two molecules,
This expression is conesiderably simplified in the body-‘ixed axessb shown in

Fig. 1, Further discussion of the potential is contained in Section III below,
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The effective poten:.iallo matrix elements are given by
eff f . $ L
(nidimaJ2] VTR0 05" = Mo exp(11)

Z <n1nzIAzlzzz(R)l “1'“2’“31jz“Tlezx,“h'jz') (3)
£,4,0

where

-1/
No = ([j)][jz][.‘ll'][jz']) e

LI R A R K e A K R A

o
Q

' 118 1/2 T T 3, by 12
utall, , Maesyy = [WiladDH 00 ( '\ |
' 1%2 (4.“.)3 o 0 o ‘\0

(k] = 2k+1, and (:1:) 4is a 3-J symbol.11

The expansion coefficients have been integrated over the vibrational coordinates

with respect to the vibraiional states, (rlni) =q_ (r)
i

mngly g g ®nngd = [ [ arier, o) (60) 05 (12) 8 4 o (rima®) @ (1) 0 (1) (4)

Equation (4) assumes separability of the molecular vibration-rotation

wavefunctions; this approximation can easily be relaxed 1f necessary.

In the case of homonuclear diatomics the additional symmetry under

nuclear interchange requires that the trtal wavefunction be symmctric. The
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3 observed cross section, c°b8 is a statistically weighted sum of symmetrized

|

5 ; cross sections
|
i

e L A oW (5)

where the + and - signs refer to the total symmetry of the spatial part

: of the wavefunction, For hydrogen, which is a boson, these weights are given

by
I+1 a _ _1
W 21+1° W 7141’

where I 4s the total nuclear spin (0 for para-H,).

The wavefunction {s then expanded in a symmetrized basis set,

ic

Imljlnzjz(l,zxe) =

/ -1/2 . 4 |
La(ety 85,0, )] fong, 0 0y, @0 % (1) 0y, @0y, (0f pyleoe) (0

where 6 1is the polar engle of 'ﬁ. This results in the following form for

the symmetrized wavefunction
* x

ot . L
v (R.1,2) R EI Uﬁn)jlnzjz(R) Iﬂn1j13232(1’2le) (7)

where the sum 18 over all the indices, In this basis set the symmetrized

EF matrix elements become
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+ (et
5,003 00 CED (R) (00, 3000057) =
y -1/2
aw{ (1+6n1n265112) (Hsn,'nz'&j;'jz' )}

X {<“1j1“2.121Veff(R)‘nfjx'nz'jz') x ('1)L<3111nzjz|veff|nz'jz'nx'jl')j’ (8)

The coupled differential equations for the system are then

+
h? d? 2(4+1) } ] -
- - + E +E ., ~3lU . {R) =
24 dRr? R? m i, Rz])2 2313:‘-"2.]2( )
- : teff Vit b3 1Y f
Z u“lhnzjzlv |40, 31" 0,0 1,7 U, 0, J1'ny' 3y (R) (9)
1 PR PR PR PY
where p 1s the reduced mass of the colliding pair, En are the internal

14
energies of the molecules 1=1,2, and E 1is the total energy at which the
molecules collide. The ground state of each molecule Egyq 1s the zero point
energy,0.268 eV, and the total energy satisfies the relation E > 2Egq. The
asymptotic solution to the Eqs, (8) yields the scattering amplitude from which

+
the symmetrized S matrix may be obtained

+

x 1\3/2

U R) ~ (—-") [6 ) 8 . ) explik R cos e)
1'111.11“2.']2() 2n TR PLINS (9% PAR P PRI PY: P p( n; jing i,

£5 6 6. .6 1k - )]
115 : PURS . P+ PARE Y PR P PY exp( N, §ing g, Reos (m-6)

+ L exp(ik

R PERPRER R) lf(nxjxnzjz"nx'i)'nz'h'l(?) ORI PR PR PR P AR PO I 9)}

(10)
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where kn1 §102 45 {8 a wave vector. The symmetrized scattering amplitude

may be defined as
+
£ (mipd? ' 1'ny'32'le) = £(n, 3,025, 0, §1'00' 1,']8)

t £(n Jyn2j," ny' 3’0" 31!} m-8)

-1
= (~2i‘/kn1j1nzjz kﬂ1'.‘l1'nz'.’lz' )

-

X z (24+ 1)[(1i (-1)!‘ 6“1“2 63132>(1t (-1)1' 6“1'“2' 631'.12')]1/2

£=0

¥ t .
X [Gnlnl’énznz‘ 6313;' sjzjz' -8, (n131m2d2 3 nx'il'“z’iz')_\ PL(COS 8) (11)

The total cross section is then given by

1/2
+ m (3,'1132']
o n n -3 'j lnl ) =
(nyiynad? ' 3i'ny' 3o ) k;dmzjz [[h”jz]]
[+~
S e gyt -
LZ (22+1)L1 (-1) sﬂxnzéjsz-l[l (-1) 6“1'“2' 631'32'J
=0
pie 2
X 180 a8 4,50 Sgng 01,y 5, (R1dimadzimy' 51 32" (12)
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The above results can readily be applied to the case of two breathing spheres

by setting j; =j,=3,"=3,'=0 and retaining only the term £4,=£,=4=0

in the potential in Eq. (3).

After generating total cross sections c°bs

as a function of kinetic
1 energy, rates of excitation and de-excitation can be obtained as a functiomn

of temperature by averaging over the kinetic energy.12 The appropriate

excitation rate constant is given by the expression

. 2\3/2 1 1 \1/2 0
; {i—?j(T) = (ﬁ-) E) exP((Ei-Ej)/KT) ‘[(e+Ej-Ei)o‘i_)j(e+Ej)exp(-e/KT)de

(13)

where E Z'Ei and ¢ = E-E, 1s the final kinetic energy. The abbreviated

3 3

indices 1,j 1label the molecular levels and K 1is Boltzmann's constant., In

a simiiar fashion, for de-excitation (Ej > Ei)’ the expression becomes

kj-*i(T) - (_k_gi_)slz (f_;)x/z feoﬁi(ewj)exp(-e/m)de (14)

0

Equations (13) and (14) are related by detailed balance and in this paper the
wnits of k(T) are cm® sec™! molecule!.The various equations developed in

this section will be applied in Sections IV, V and VI,
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IIi. THE INTERMOLECULAR POTENTIAL

The interaction potential between two hydrogen molecules has been

R ot JUTE W O

discussed in some detail in the 11terature,13 and much work is still

WL RO,

XTSI N T R T »
Rt ey N TR N R -
CERMNRPTY JPTRe! SR Al St B Aot . -

proceeding.la Unfortunately for our purposes most potentials ;

TR RN N

developed thus far are unsuitable for application in a study of vibraticns !

EANMY

since they examine the H,-H, surface keeping the intramolecular H-H bond

(Lol

distance at the equilibrium value of ~ 1.4 Bohr., Since the effective potential

i, o
4

wr
*

matrix elements in Eq. (3) must be obtained by integrating over the vibra-

tional cuordinates in Eq, (4), the potential surface must be known as a

e

o

function of these coordinates, Currently the only available potentials that

vy e

incorporate this feature are the Silver-Karplus London13f and Valence-Bond

(vB) surfaces.13g As was demonstrated elsewhere,15 the inherent simplicity of the
ldtter curfaces precludes a high degree of accuracy. However, these surfaces

are believed to be qualitatively correct,13£ and they should allow for a
determination of the basic physical effects dominating the collision., This

goal ie in accord with the purposs of this research, which is the determination

[,

of the collisional mechanism that is operative in hydrogen relaxation,

The potentials were generated as a function of the angles 6,, 6,, and
(¢, =®,), and the distances r,, r, and R. They were then fit by a least
squares procedure16 to the expansion in spherical harmonics in Eq. (2),

including all terms up to A;;.. This expansion incorporates the privcipal

components of the potential: the spherical term Agpo and the various short-

ot S oy 5 TR ARl ey e o
r e AT ol WA At R B

and long-range anisotropies Ajgpz, Agyn and Ajzj4. In computing the coupling
matrix elements, the H, molecule was treated as a Morse oscillator,17 and the

integration in Eq, (4) performed numerically.
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A few additional comments are necessary concerning the potential. As

the H, molecule is stretched to a bond distance greater than 3 Bohr, the

potential becomes decidedly more anisotropic than can be adequately expressed
by a least squares fit to the six-term expansion employed above. The number
of vibrational states n that can be included is therefore limited to those

whose wavefunctions (pn(r) die out sufficiently by r=3 Bohrs. This is

not a severe restriction since the bas.c trends are discernible within this

framework.
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IV. COMPUTATION OF CROSS SECTIONS

A, General Comments

A T L Y P BN

‘vhe Gorden algorithmls was used in solving the coupled scattering

equa‘.ions, Eq. (10). The utilization of symmeérized basis states in Eq. (7)

LF xA Ty,

v

requires soiving fewer coupled equations, This procedure also results in

o r X

the calculation of c:

2l

“ .

+ . \ j
Al PR PE PR PR PR U PAC PAD TE 16 P PR PR PR - PAR PO - PAR PAD BEN X PR IR PR P2 VAN PL - PAR PAD R G £

which is an inseparable sum/difference of direct and exchange cross sections
respectively (neglecting the generally weak interference terms). Note that
for para-H, the statistical weight, Wa==0, and only S; matrices need be
calculated to obtain oobs on Eq. (5). 1In actual computations the basis set
used in calculating even or odd & valued S; matrices is different because
of the nature of the symmetrized potential matrix in Eq, (3). The SZ
matrices corresponding to even or odd £ values behave similarly as a functiocn
of %, but they can have differing contributions to the total cross section.
Within r.ivher set, however, it is often sufficient to compute the matrires at
a uﬁiformly spaced grid (rather than each £ wvalue) since the behavior is
smooth as a function of &,

The total energies of the calculation were on the range 1.05eV<EC<3.12
for the case of two breathing spheres and 0.5 eV < E £ 1.35 eV for two vibrntors
Since vibrationally excited states are closed below 1,05 eV, only purely
rotational information is obtained in the lower regime, A more thorough

treatment of this aspect is to be presented elsewhere,15 and only brief

comments concerning pure rotations will be made below. Vibrational trausitins
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inherently lead to extremely small cross sections (save the near-resonant

V-V cases) particularly near thresholds. The difficulties of calculation in
these cases have been discussed elsewhere,19 and one must use tight tolerances].'8
Nevertheless, a certain degree of '"noise' still enters, and we have found it
expedient, with the rrte calculations of ihe following section in mind, to

smooth them using 4 spline fit.zo

B. Breathing Sphere Transitions

The maximum basis set employed in these calculations, in the notation
nyn,, is showr. in Fig.2(a) Th: actual basis set in any particular calculation
depended on the number of states open at that energy. The Si matrices were
tested for basis set rcnvergence and at varying tolerances to ensure numerical
stability, It was generally necessary to include two closed channels for
con;ergence‘

Due to differences ia tie two potentials used, especially in their
slopes at small intermolecular separatfomns, cross sections for the varjous

inelastic transiticns can sometimes differ by an order of magnitude.2b

The
steeper slope of the VB potential gives rise to larger cross sections,
However, the behavioral aapects of the cross sections from the two potentials
are quite similar. 1In particular, transitions involving the change of the
same number of quanta are grouped together and are generally separated from
other groups by approximately an order of magnitude. This is i{llustrated in
ig.3(a)which shows tl.« results of calculations using the VB potential. Each

and encompasses the de-excitation cross sections involving the same number

of quanta, An, exchanged with translation
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Hy(n;,0) + Hy(n,,0) » Hy(n,',0) + Hy(n,',0) ;

}

An = (n;+np) - (n,'+ny') :

3

The energy deficit, AE = En10 + Enzo - En,‘o - En,'o’ is different for the 3

various transitions within each band, and this together with the different
coupling effects accounts for the spread of the banda, Figure3()and all
following figures depict the results of calculations using the Vb potential
since we feel that this potential is more in agreement qualitatively and
quantitatively with the true physical potential (cf. Section VI below).

It is quite evident in Fig.3(a)that the near resonant V-V transitions,
for which An=0, have greatly enhanced cross sections and are well separated
from tiiose for which An > 0. The cross sections for An > 0 tend to overlap
considerably in the threshold region, The individual cross sections generaily
rise with energy at different rates as shown in Fig.3(b‘for a fer. typical
cases, This behavior can give rise to differcut temperature scaling which
will be discussed later,

The detailed behavior of the cross section .n Fig.3(b)is rather complex,
but some comments can be made, For instance, it 1s apparent that

even though the energy transferred AE is slightly

<
%0311 ~ Y03~ 02 03~ 11

smaller than AE Both these transitions result in a net change of

0302 "'
An=1, However, physically these constitute different processes. Neglecting
the weak exchange term, the case 0302 corresponds to a change of ons

quantum on the second molecule, while 03- 11 requires one molecule to gain

a quantum and the other to lose two quanta, This latter case is clearly less




- B-15 -

favorable due to diminished coupling effects. A similar situation occurs in

the case of o Caution is called for in any generalization

>
0200~ C11-00 -

of these results since it is apparent that ¢ at least at

>
22511~ %22-02°

lower energies,

C. Vibration-Rotation Transitions

In the calculation of vibration-rotation S; matrices by close coupling
or even effective potential methods, the principal deterrent is the number of
channels tnat must be included. While in the case of hydrogen this problem is
reduced due to the large rotaticmal spacing and weak coupling, even in this
case the problem rapidly becomes serious, This is obvious in Fig.2(b)which
shows the high density of the rotationn! states involved., In tackling a
problem of this size, a certain judicious choice must be made concerning which
states to include in order to achieve convergence of the desired SZ matrix
elements. Another practical restriction is imposed through the time required
per calculational step,18 which is a function of the number of states.21 In
practice any basis larger than 20-25 states imposes excessive demands in terms
of computer time. Calculation of each S; matrix in the basis of Fig.2(b)
took 8-10 minutes in double precision on an IBM 360/95 computer since the
rolerances'® had to be consistently maintained at 5 x 1076,

Tests of convergence were performed by varying the states in the basis,
Purely rotational tranzition SI matrix elements generally converged on
inclusion o* all states up to the energetically highest open level. Coupling

decreases rapidly for large multi-quanta transitions, giving rise to extremely

small cross sections for transitions 1like 0606 0000, Inclusion of such very

high 03,0}, states did not affect the principal rotational and vibrational

transitions,
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The actval basis set, therefore, consisted of the twenty states shown in
Fig.2(b)

Figure 4 (a)shows several purely rotational cross sections as a functicn
of energy. The principal ones, for which Aj=2, lie mainly in the region
1072 iz <0< 10 Kz, and Aj > 2 cross sections decrease with increasing 4],
Figure 4(b)is a profile of de-excitation rotor transitions at a total energy
of 1.06 eV, It is apparent that for inelastic rotational cross sections

c . ) the largest member corresponds to + - '+i,t)=2,
. g p (314 32) - (32" + 32)

In addition, since the lower quantum states are energetically closer together,

cne readily sees for 3, < j, that

5322 1232 3idp = fuds -2

Mauy of those trends were previously observed in atom-molecule collisious
such as He-?zsa and in rigid-rotor studies on Hz-Hz.ga Although the trends
are the same, the magnitudes of the previous H,-H, cross sectionsga based on
& different potential are somewhat smaller. The same general behavior is
seen for taose transitions that involve one vibrationally excited molecule,
with an additional intevresting aspect that can be seen in the comparison of

the two collisions
H, (02) + H,(00) = H,(00) + H,{02) (a)

Hp (12) + H,(00) - Hp(10) + H,y(02) (b)

" 2
ol
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Case (a) is really an elastic collision due to the enormous éontribution of
the exchange term 0(0200-0200) in Eq. (15). 1In case (b) the exchange term
is extremely small since the process would be a vibrational exchange.
Therefore, case (b) must rely on the direct term o(1200-1002) which itself
describes an exchange of rotational quanta between the two molecules. The
net result is that case (a) has a much larger cross section than case (b).

Figure 5 represents a typical profil. of vibrotor de-excitation cross
sections at a total energy of 1.2 eV, The transitions tc the left of state
0100 on the abscissa are vibrotor cross sections, wiile pure rotor cross
sections (neglecting the very weak exchange process) are to the right, It is
directly visible that as the rotational quantum change Aj 1increases beyond 2,
the cross sections decrease rapidly. This emphasizes the importance of
coupling effects and shows the small magnitude of near resonant vibrotational
séctions which are necessarily accompanied by large changes of rotational
quanta,

As can be expected, the largest cross sections are those for which
1Aj| is 0 or 2, The largest vibration-rciation (although not substantially)

cross sections from 0010 and 0212 are to 0000 and 0202 respectively, Similarly

the. largest cross sections from 0210 and 0012 are to 0202 and 0000, respectively.

These latter cases involve simultaneous vibrational and rotational transitionms,
while the former, purely vibrational, Some parallel observations on the He-H,
system have been made recently.z1

It must, however, be noted that the tctal energy of 1.2 eV in Fig. 5
is the same for all the cross sections. Hence the various cross sectioms are at

different kinetic energics and this accounts for the generally low magnitude

of transitions from level 0414 which is barely open at 1.2 eV,

-
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For the comparable breathing sphere tramsition o is slightly

01~ 00

VR
smaller than 00100_;0000 as has been observed in the He-H. system by Zarur

and Rabit:z.sal Recent work using the atom-breathing sphere model for th:-
He-CO 22 and other model system323 has shown the approximation to give
reasonable results under certain circumstances. Additional comments on this

matter will be made in Section VI.
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V. RATE AND RELAXATION BEHAVIOR

A. Breathing Sphere Rates

The rates were calculated from the cross sections by Eqs. (12) and (13)
over a large range of temperatures, The rates are presented in Fig. 6
analogous to the cross sections in Fig.3(a). The behavior qualitatively
follcws that which can be deduced from the cross sectioms, However, it must
be noted that differing threshold behavior gives rise to slightly different
temperature dependence, At high temperatures the dependence is Landau-Teller
while non-linear behavior on a 1log k(T) vs. 7°1/3  plot shows up below
~ 600°K,

The greatly enhanced rates for the near resonant V-V processes are a
consequence of thefr extremely large cross sections in comparison to the
An > 0 transitions, The VB potential indicates a difference be seen the
rates for V-V and V-T processes of approximately a factor of 10%-10%, This
is a very significant difference and it is not clear if the inclusion of

2¢, 6b

rotational states would tend to diminish it,. Nevertheless, it is evident

that ladder climbing mechanisms (i.e., transitions of the type
nn; @ n; -1,n,+1) are extremely important in the rapid and efficient
transfer of population to higher vibrational levels,

Experimental measurements of the rate of self relaxation of vibrationally
excited H, molecules by the simulated Raman scattering (SRS) method find no

6b

difference in the rates for ortho-or para-H, above 300°K . Below room

temperature the para-H, —para-H, rate is slightly smaller than the ortho case.
Fis,ure 7 presents a comparison of the results of this calculation with both the

SRS experiment (para-H,) on the range 50°-500° K and the shock tube dat:&\l"5
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from 1000°-3000° K (normal Hy). Of the two potentials used the results of

the VB potential are closer to the experimental ones,which suggests

that this is the more accurate one, The VB potential has been used in a
collinear study of D,-D, near resonant V-V processes by Alexander.Zb In
comparison wicit several ab initio potentials, it was observed that the VB
potential gave smaller cross sections and this was attributed to the slow
decrease of the potential at long range. While the agreement with experiment at
high tempuratures is substantially better than at low temperature, gome
discrepancy still exists, However, the breathing sphere rate behavior is at

least qualitatively accurate,

B. Vibration-Rotation Relaxation

Rates were generated in 4 similar fashion for V-R-T transitions below
306°K4 The restriction to this range was necessitated by the availability
of only low energy cross sections, The results of these calculations are
plotted in Fig. 7 in the following manner, First a rotationally summed

de-excitation rate is defined by th: relation

tot
o™ T L Fiy0000s (1€)

kNN PY
These rates are shown in the inset of Fig. 7, The fact that rates from the
states 0212, 0012 and 0210 are larger than that from 0010 is indicative of
the importance of rotational transizions in vibrational excitation, Molecules
in the states where j; and/or j,#0 can apparently utilize different and

stronger portions of the interaction potential.9b
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Now consider the general V-R-T relaxation process between the ground

and first excited vibrational states

Ha(13,) + Hy(03,) + Hp(03,') + Hy(03r')

The rate of change in the number density, of molecular species H,(1j;)

pljl

can be written as

d o
s ST 2 - +k o
at 1510522 03,03," P13, Poi; T 03,03, > 13,03, P03y Po3y
APRENPY
Since rotational relaxation is generally much faster than vibrational
relaxation, it is reasonable to assume that the rotational states furm a
Boltzimaun distribution.24 We may therefore write the number density as
pnj = pn Pnj
where
21+ 1) exp(- (£, -E_ )/ 1)
P = (18)
nj Z oyt /
(214 1) exp - (B, E_)/«1)
j!

1s the rotational poptlation in vibrational level n, Substituting Eq. (18)

in Eq. (17) and summing over 3, leads to

(17)

St42.
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(_i_‘il = ?-d_g]_'j.l. = Z -k p P P P
dt L dt 13,03,+03,'0§,' "1 "1i; "0 "0j,
5 all indices

2
* k03,0342 11,03, Po Po3 Pog  (19)

Equation (19) naturally leads to a definition of the effective rate constant as

- _ <
01-00 L
ATRPRIW Y

7~

P13, Pos, *13,01, 204,035 (20)

The effective vibrational equations governing the process are then

dpo - _ 2
it = Xo1s00P0P1 " Yoo~ o1 Po
%%
P it

where the second equation is readily established.

This set of equations can be easily solved to yield

Po(t) k01200 P0(®)

° ‘{[po((’) {Eor-, 00 + ¥o0- o1}+ [Em-»oo P = py(0) {Eowoo N Eooem}]

—

X exp <' ko100 ° t)f
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where p = po-l-p1 is the total demsity,
It can readily be shown that as the system nears equilibrium

(90(0)'~ poén) and pl(o) ~'916”)), the above equations can be linearized

to produce the following simple tehavior
pL(t) - p (=) = [pn(«') - pn(O)_} exp ( o) ht)

for n = 0,1, The relaxation rate in the exponent under these conditions is

the usual sum of up and down rates in a two-level system

k

M= k1500 Koo 01

This relaxation rate is shown in Fig, 7 labeled vibrotor (with the VB
potential), It is interesting to note that while the temperature dependences

tot

of k in the inset of Fig., 7 have mostly negative curvatures, the
ny§inz3;

averaging procedure in Eq. (19) yields an overall rate with the normal
positive curvature, The vibrotor calculation clearly lies closer to the
experiment than the breathing sphere curves, but it still falls short of

precise agreement,
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VI. CONCLUSION

There seems to pe little doubt that the essence of the relaxation
mechanism is contained in the full vibrstor-vibrotor treatment with the VB
potential. Further refinements are possible with more sophisticated
potentials and perhaps improved dynamical mcthods, An important conclusion
from the above analysis is that rotations do play a role in relaxation (at
least in the low-temperature region examined in detail) and the artificial
exclusion of j#0 states in the breathing sphere approximation under-
estimates the efficacy of vibrationally active collisions, This is in accord
with previous work on He-sta and the recent parallel semiclassical treatment
of H,-Hz.zc Clearly,rotational transitions would be expected to continue to
enter into vibrational inelasticity at higher temperatures, However, this
does nct imply that the breathing sphzre rates will have no region of

4,5,6b,¢ the rotationally

applica™ility., In uxperiments such as those above
summed and averaged rates of Eq.(19)are the ones of relevance, The proper
comparison is therefore between the breathing sphere rates and those of
Eq.(19). Model calculations have shown that & region of applicability existsod
for this approximation, depending on the nature of the interactions, Indeed

In the case of He-0022’25

breathing sphere calculations were shown to be
adequate, Further work is still needed on this important problem,

A few final comments are in order, These calculations are moderately
expensive in terms of computer time required., It should be recalled that
these were minimum size3b effective Hamiltonian calculations, It is cherefore
easy to grasp the magnitude of difficulty involved in studies of more complex
(massive) molecules. Several ways of circumventing this problem can be

suggested,26 bu: it is beyond the scope of this paper to delve into this

problemn,
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FIGURE CAPTIONS

->
1. Body-fixed axes for the system of two molecules, R connects the centers

of mass of the molecules and the six coordinates are R, r,, t,, 8;, 8;

e

and the dihedral angle o, -9v,.

2. (a) Energy spacing for the breathing sphere levels studied.

(b) Energy spacing for the vibrotor levels considercd.

s kel

3. (a) Breathing sphere deexcitation cross sections o(n;n,-n,'n,'). Inset

PR

numbers denote the quanta lost to tramslation, An = (n;+mn,) - (a,' +n,').

(b) Selected cross sections between breathing sphere levels, o(n;n,-n,'n,').

4, (a) Selected rotor cross sections in both ground and excited vibrational
levels,
{b} Profile of rotor cross sections in the ground vibrational state at the

total energy 1,06 eV. Lines connect the same initial state, 0j,,0j,.

5. Profile of various vibrotor cross sections at the same total energy 1.2 eV.

Lines connect the same initial state 03,1j,.

6. Deexcitation rates for H, breathing spheres, Bands encompass rates for
transitions involving the same number of quanta lost to translation,

An = (n,+1n,) = (0, +n,").

7. Rates of deexcitation in para-H,. Results of calculation with the London
and VB potentials are compared with experiments, Vibrotor results are only
presented for the VB potential, The iuset shows low temperature

summed rates defined in Eq, (16),
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ABSTRACT

Ih this wor: stochastic theory is applied tc the treatment of atom-
vibrotor collisions. This is an extension of a previous paper which described
molecular collisions by a Pauli master equation or a Fokker-Planck equation.
In this framework an emergy conserving classical path model is 2xplored, and
methods for solving the equations r imerically are discussed. The coefficients
of the Fokker-Planck equation are shown to be expressible as simple functions
of the interaction potential. Estimates of the computational labor are also
discussed. Finally as a follow-up on the initial work, numerical solutions
bf the master equation for the collinear vibrational excitation provlem of

Secrest and Johnson are presented in an Appendix.
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H I, INTRODUCTION

T
% Bl

Many important and interesting gas phase phenomena involve collisions

TR TR

of relatively large and complex particles, A previous paper1 (hereafter
referred to as 1) investigated treating molecular collisicns as a process of

2K probetility diffusion between quantum states, This avenue of approach seems

A

attractive for handling complex collision systems that are too difficult to
treat by standard methods., These ideas are more fully developed in the

present paper,

z aibiian b AR R A S R
. N -y s

The treatment in I presented equations that are applicable, ir principle,
to arbitrary systems. However, the theory was only developed in detail for
ore-dimensional problems (i.e., one internal degree of freedom), The present
paper concentrates on an atom-vibrotor collision system as the simplest
meaningful case with more than orn: degree of freedom. The resulting stochastic
equaticns then have two spatial variables, one for vibration and one for rota-
tion., All the relevant concepts can then be generalized in a straightforward
fashion to arbitrary inelastic scattering problems,

The stochastic theory requires the solution of either & master equation
(ME) or a simpler Fokker-Planck equation (FPE). One of the most desirable
aséécts of this theory is that all the physics of the collision system can be
condensed into a small number of coefficient functions in a FPE, Qualitative
predictions about the behavior of the inelastic processes can then be imme-
diately made by considering the magnitude and form of these functions, It
will be shown in this work how the FPE coefficients can be generated in a
straightforward fashion from a given intermolecular potential, This approach
may ultimately prove to be useful for relating observed cross secticns to the

properties of an individual collision system (i.e., the Hamiltonian).
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In most cases of practical interest, the ME or FPE will not be analyti~-
cally solvable. This paper therefore explores methods of solving these
equations numerically., The translational degree of freedom (represented by
the vector ﬁ) is treated in this context as following an energy conserving
classical trajectory. For most problems of chemical interest the particles
are messive enough so that the classical path approximation i{s expected to be
very good. The combination of a clacsical translational path with internmal
degrees of freedom obeying quantum stochastic equations of motion provides an
attractive conceptual model for molecular collisions.

Section II deals with the detailed consideration of the stochastic
theory as applied to atom-vibrotor scattering, It i{s shown that the ME can
be approximated by a FPE which describes the flow of probability between
energy levels rather than quantum numbers, This has important advantcages,
e;pecially for case: such as asymmetric rotors where the quantum nunbers are
poorly defined., Expressions for the FPE coefficients are developed in terms
of matrix elements of simple functions of the interaction potentizl, Applica-
tions of various approximate methods to the stochastic equations are considered
in Section III,

Numerical methods of solution are treated in Section IV. Given an
interaction potential, an energy conserving classical path model for the ME
requires that an exponential matrix be calculated at each step of the R
integration, If n 1is the total number of quantum states, this procedure
will typically require matrix multiplications whose computational difficulty
varies as n®, The FPE, on the other hand, can be solved in principle by
methods whose difficulty is more dependent on the number of degrees of freedom,
N, than the number of states. The relative computational efforts can be of

considerable practical importance,




S C-4 -

Finally, calculations were presented in I for a collinear vibrational
encitation problem. It is shown in this paper that some of the approximations
involved in those calculations can be eliminated or {mproved., In particular
the classical path formulation of Section II is {llustrated. Results for the
model He-H, collinear system of Secrest and Johnson are presented in an
Appendix. In addition it is shown in Section II that the stochastic equations
remain very easy to solve, even for noncollinear collisions, whenevir the

intermolecular potential has the form
v = AR) + B{R)c(?)
where r is shorthand for all the internal degrees of freedom, The present

paper further develops the ideas presented in I, but much additional work is

still to be performed,
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II. STOCHASTIC THECRY OF ATOM-VIBROTOR COLLISIONS

It was shown in I that the ME for a collision system with N internal

degrees of freedom is given by

Y

1 ot ’
xl,xz, .-.KN

- LI T IpY

where x, 1s a (discrete) index for the i-th degree of freedom. If the

i
microscopic transition rates A are strongly peaked about X, = xf, then
P(x{,x;,...,xﬁ,t) can be expanded in an N dimensfonal Taylor series about

the diagonal values, The FPE is obtained by retaining in this expansion only

terms through second order. It will therefore contain N terms of the form

2y terms of the form gﬁgr and (N-1) terms of the form 2P
Bxi ’ ox, ! axiax.1 *

Since the mixed partial derivative cross terms only occur pairwise, all the
essential features are contained in a two-dimensional example. In the
remainder of this paper we shall use an atom~vibrotor as a prototype two-

dimensional problem.

A, The ME for an Atom-Vibrotor System

The relevant ME is

ga;PJ(n,J»t) = XAJ(n,j;n'.j';t:) P (n,3%,e) (2.2)
o, i
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where n is the vibrational quantum number, j 18 the rotational quantum
number, and J (s the total angular momentum. The microscopic transition

rates in Eq.(2.2) are given by (see I)

'rAJ(n,j;n'.,j';t) - ‘(n,jlexp(-:LV'r/ﬂ)In',j')l2 'ann'éjj' (2.3)

where V 4s the intermolecular potential and T is the (generally time-

dependent) increment betveen time steps. Normally the orbital angular momentum
4 should be included in Eq.(2.3), but it is assumed to be eliminated by using

an effective Hamiltonian.2 Note that V 1s a function of the translational

coordinate R so that Eqs.(2.2) and (2.3) assume that R 1is a known function

of time.

It was shown in I that the above ME involves approximations whose

validity depends on the size of t. Most important of these 1s the use of

PR ERCE Y % WL S 3

the repeated randomness assumption in the strong interaction region of the
collisfon, This requires that the probability amplitudes accumulate enough
phase {n the vime interval t to t+7 for the random phase approximation
to be made at each step. If T 1s too small, the phase accumulation will
not. be large enough and the ME will not be a good approximation, Thic
restriction does not apply to the weak interaction region where only a small
fraction of the inelasticity is presumed to occur,

There are also constraints on the largest permissible value of r. The

time interval Tt should, clearly, be short compared to the duration of the

collision, It may also be noted that the time derivative in Eq.(2.2) was

obtained as a small t approximation to the finite difference expression |

J J
'a'a';:'PJ(n,j’t) ~ P (n’j’t+T)T’ P (n:j)t) (2.4)
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The above arguments indicate that T nas an optimum value determined

by the characteristics of the system at each point in time. It was suggested
; ; in I that the average value of the time required for a jump between adjacent
% 3 quantum states was a good estimate for T, This should also be reasonably close

to the shortest time interval for which the difference equations are numeri-

cally stable, If H, is the Hamfltonian for the internal modes (n and j)

and 'nj are its eigenvalues, the prescription for ~(t) becomes

T(€) = ) P(mt)

! ‘/<| | Dus

A
= R }; P(n,3,t) ‘3 (2.5)

| n, 3 { EE (enj - cn'j')z Ivnj,n'j'lz}!/2

n',j'

In Eq.(2.5), Aenj should be interpreted as the mean of the energy gaps
between nj and the adjacent quantum states, The best form for this is not
entirely clear at present although there is no difficulty for a pure vibra-
tioﬁal problem or a pure rotational problem., In these cases the geometric
mean of the two nearest energy differences is indicated. For a harmonic

oscillator Acn just reduces to the constant energy spacing HAw. The

stability criterion of Eq.(4.11) may provide a suitable alternative prescrip-

tion for T in the atom-vibrotor case. Practical calculations would also be

very helpful in this regard.
The ME is still not complete until ﬁ(t) 1s known. One way of i
specifying this is to assume that the translational degree of freedom follows

a classical trajectory., If the coupling between translation and internal
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modes 18 then ignored, simple models can be developed for the inelastic

scattering.l A simplified form of Eq.(2.5) such as

-1/
T(t) = hA‘nojo[ 2 (enojo- ‘n‘j')zIVnojo,n'jalz} 1/2 2.6)

nC’jl

(ng,jo is the initial state) would be appropriate in this case, It should be
noted that when T 4s an appreciable fraction of the collision time, the
tine derivative in Eq.(2.2) should properly be written as 2 finite difference
(ses Zq.(2.4)). 1In this case calculations which treat (2.2) as a differential
equatfcn in time may significantly overestimate the interaction as a result,
However, hoth the translational decoupling and small T approximations are
quite good in the limit of a large number of strongly coupled internal
gtates.

Given the prescription in Eq.(2.6), the ME is very easy to solve if Vr
1s time independent. It is easy to see that this will be truc whenever the

potential has the general form
v = AR®) +3®)c@) (2.7)

where ? indicates the relative separation vector of the diatom, Inserting

Eq.(2.7) into Eq.(2.6) gives

w0 = nas s [ (g ) 'Cnojo,n'j'r]-l/zm(i) (2.8)

n|’jl

- N
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Thus the rates in Eq.(2.3) become
J Vg
T(t) A (n:j;n v 3 ;t) -
- -
-
- 1 A¢ c(r)
‘(n,jlexp fp {o 'n.’j') ’ - Gnn' éjjt
2 (fage™ Cange) 10 h
4 nolp m"i" nojo,n"i"
# n"’j“ o

All of the time dependence in the rate matrix A is now seen to be contained
in the multiplicative factor 1/t(t) so that the solution of Eq.(2.2) is the
exponential of a time independent matrix multiplied by a function of time,
These simple models have the disadvantage that the classical trajectory,
'ﬁ(t), is not coupled to the internal degrees of freedom., Since this will not
conserve the total energy, the results can be unsatisfactory when the energy
transfer in the collision is an appreciable fraction of the translational
energy. One way of remedying this problem is to force conservation of energy

by defining the instantaneous radial velocity as3
q Lo 2
i {2/u. [E-wmw-(uo) - (v)“ (2.10)

Practical application of this approach will, of course, require that R(t)

be computed numerically from Eq.(2.10) while the internal modes are propagated
by Eq.(2.2). The sign of %% is not determined by Eq,(2.10) so that it may
be advantageous to integrate the momentum conjugate to R as well (see

Section IV). Expectation values of H, and V are conveniently given by

(2.9
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<H0> - z ‘nj P(n’j:t) (2.11!)
n,j

v = Z z JE 5t (3%, e) (n,3V(R)|n’,3") (2.11b)

n,j o,

although other choices are possible. The orbital angular momentum £ may be

treated as a constant within an effe.tive Hamiltonian formulation,2 or (4%

can be expressed in a proper coupled angular momentum representation,

B. The FPE for an Atom-Vibrotor System

For this special case the FPE 1is obtained by a Taylor expansion of
f“(n',j',t) in Eq.(2.2). However, this expansion could either be in terms

of the quantum numbers n,j or the corresponding energy states ¢ It

g’
can be shown that these two approaches are equivalent in that their finite
difference approximations both match the ME through second order (see
Section IV). However, it will be shown below that if the expansion is
performed in terms of the energy levels, the FPE coefficients are expressible
as matrix elements of simple functions of the interaction potential. This is
in contrast to the development in I, which utilized expansions in the quantum

numbers. The two methods are identical whenever the energy levels are aevenly

spaced as for a harmonic oscillator.

kS




“Ce11 -

The FPE in energy variables is now

’t') = By ae J(‘n"j’t) + Bza P (n"j’)

G Sz_j'PJ(cn"j’t) t G 5—3’-? (n’c ’t) + acaazcj J(n ’) (2.12)
where the coefficients are given by
B, = fl!- z (cn,-cn)k AJ(n,j;n',j';t) (2,13a)
n|,j!
' Ck - -l-};- Z (cj,-cj)k AJ(n,j;n',j';t) (2.13b)
n,j'

D= 2 (en'-‘n) ('j'-‘j) AJ(n,j;n',j';t) (2.13¢)

o, 3!

The sums in Egs.(2.13a,b,c) can be performed analytically, First define m
to be the reduced mass of the diatom and u= (r -re) to be the vibrational

displacement, The internal Hamiltonian H, can be decomposed as

Hy = H +H

T
where
H, = p:l/Zm + Vo (u) (2.14a)
A X
Hr = §2/2 mr? (2.14b) ]
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and
Hln,3 = ¢[n,3) (2.15a)
H[n,§) = ejln,j) (2.15b)

These last two equations assume that rotation and vibration are separsrble,
but this approximation can be easily removed. The various €'s in Eqgs.(2.13a,b,c)
can now be replaced by H, snd H_. Inserting Eq. (2.3) into the expression

for B;, Eq.(2.13a), yields

TB, = z <n,jIE:~:p(iV1'/h)|n',j'><n'.j'|(Hv-en) exp( - ivr/n)|n, 1) (2.16)
ni,jl

N‘oting that z ln',j‘)(n',j'i is just the unit operator leads to the result

n, 3!
By = (n,_‘l[exp(iV'r/fz)(Hv - en) ep(-1vr/,ln, 3 (2.17)
It is convenient to define new states Nv) ara Wr> by
[v,) = exp(vr/h)(H -¢ ) exp(=1Vr/h)|n,1) (2.183)

I exp(1V/A)(H, -¢,) exp(-1VT/A)|n, 1) (2.18b)

20 TP Y ke R aw R R ARV SR PR T
Loy e “ fa it < # o Ty
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This allows Eqs,.(2.13a,b,c) to be compactly written as

TB, = (n,jl\','v) (2.19a)
27B, = <wv|vv) (2.19b)
TG = (m, 3y (2.19¢)
27Cy = (wrlwr) (2.19d)
TD = <wr[q;v> (2.19)

Furthermore Eq.(2.18a) can be rewritten as
0 = exp(vr/n) [ (4, -e.), exp(=1vr/n)] |n,3)
where [.,-] 18 the commutator bracket, Therefore, it is easy to see that
1 3%y Av\? dy
Wv) = zm‘[i'rh 5—;‘-{*-73(-6—&) - 27(-—) pu}[n,j) (2.20a)

and in a similar fashion

rectty = v 0et) (B 4 B[ B 3] 2 2

27 oV + T2 (av>z 4+ SiTh %;—\f’}ln,ﬁ

(2.20b)

P A T, A Ao gl e e gy ey
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where 4 x = cos O and the operator G is defined 'by'5

Jg+y) o f3-v 0 li+w }

Gl3) =
E V2i+1 V23 -1 V2i+3

>

The three ¢ dependent terms in Eq.{2.20b) can te removed by transforming
to the body-fixed (BF) reference frame6 or by usiny en effec  ive Hamiltonian
approximation, 2

The new states i\'}v), Htr) have an interesting physical interpretation.

From the Heisenberg K equations of motion

dH
; 4 Loy, ov
Hv T =T Zm( u‘u+pu u)
L (0% v
 2m (ih duz 2 aupu> (2.21a)

and
s _ i1 3 2 V] ith v _ 27 XA
Hr 7 [Bx (1-x )a + 21T ha G +""—-"""‘(1 =7) a—(;f -z—f-_—;!—) o jz (2,21b)

The states |V ), |V ) can, therefore, be expressed in the form
r v

[v,) = [ H + %(ﬂ)zj |m, 3 (2.22

2mr2|tllr> = [ﬂ'{r + 1_T; ) (%)2 + 72(1 - x?) (-g—::-)z]ln,j) (2.2:

2

which are of the form of T times a rate of energy transfer plus T% times

a dispersive term,

[N A AP R, 1

il},ﬁa—— PR
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T

) III. APPROXIMATION METHODS AND THE STOCHASTIC THEORY

e i bl e s o

Various standard approximation schemes for inelastic scattering can be ‘%

incorporated in the stochastic theory. In this regard it has been shown above

that the FPE coefficients can be obtained directly from the potential. The 5
properties of these coefficienus, without further computation, may then be ;é
used as a simple guide to the behavior of the collision system or mey provide

physical insight fnto the approximation methods, For example, in this section
we shall consider the combination of breathing sphere and effective Hamiltonian i
methods with the stochastic theory, '

Effective Hamiltonian methode reduce the dimensionaiity of a close

coupled calculation by preaveraging or eliminating angular momentum projections
hefore doing the collision dynamics.2 The centrifugal decoupling (CD) approxi-

mation7 is easily incorporated into a formulation of the ME or FPE. Use of

an effective potent1a18 with the FPE is inconvenient unless a Veff operator
can be defined, thus permitting the use of Eqs.(2.204,b), However, it has
recently been shown that modified effactive potential operators can be defined
which retain the same dimensionality reduction as the orlginal formulation.9
In the BF reference frame the potential has no dependeace on azimuthal

angles, Eq.(2.20%) therefore simplifies to

2wty ) o {20-xt)(8) w ea[ )BT ¢ 2ira e a1

where x 1s now the cosine of the angle between R and ?. The quantum
number ® (che projection of the rotational ingular momentum on the BF 2z

axis) should alsc be included in the ME, Eq.(2.2), in this case. Then (4%
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ir Eq.(2.10) 1is given by
(£2) > J2 + {(§?) - 2(w?) (3.2)

if the CD approximation is used, In an effective potential formulation, on
the other hand, 42 is treated as a constant throughout the collision,
The breathing sphere approximation assumes that there is no strong

vibration-rotation coupling. Defining F(Gn,t) as

F(tn,t) - Z p(en,ej,c)
3
it is easily seen that -I;(en,t) will satisfy a breathing sphere FPE 1if the
vibrational and rotational parts of Eq.(2.12) are separable, This will be
true, for instance, i D=0 and if B;,B, have no rotational dependence.
Since the coefficients can be obtained relatively easily, it should be
pogsible to determine if a breathing sphere FPE is a good approximation to

Eq.(2.12).
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IV. NUMCRICAL METHODS FOR SOLVING THE STOCHASTIC EQUATIONS

There will obviously be only a small class of scattering problems for

which the ME and FPE are analytically solvable, Numerical methods for solving

: the equations with appropriate boundary conditions are, therefore, considered

3 in this section, Consistent with the goal of describing the scattering process

3

E

1 by a simple equation, we shall assum: that an effective potential will be
used.s’9 The translational degree of freedom will also be described by an

energy-conserving classical path as outlined in Section II.A.

EUP SR N X T TR S QT G - R Ly 0% T

Zawra

R LN AL K4 A4

A, Numerical Methods for the ME

ST R

Within the classical path approximation, the system is started in an

initisl state n at a value of R outsfde the range of the potential,

odo

For each value of the orbital angular momentum 4, the equations for the

internal modes and R(t) are integrated until the particles are separating

and R 1is again outside the range of the potential. Each such "trajectory"

will yield the complete vector of transition probabilities into all the

possible final states n,j,
4 s
P (E) :
Ndgny 4y

Total cross sections for translational energy E, are then computed by

nh? £
O'nojo-bnljl(Ey,) Z“El(zjo“) }; (24+1) Pnojo-mxjx(E) (4 1)
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Internal state probabilities are propagated from time t to t+T by

the finite difference form of the ME

2
P‘(n,j,ti-v) = E: |{n, jjexp[- 1V(R) 7/A] ln‘,j')‘ P‘(n',j',t) (4.2)

n‘,j‘

where T is given by Eq.(2.5). The translatifonal degree of freedom is

handled by numerically integrating the equations
- 1/2
R = sign(pR) X {Z[E - 2L (4 +1)/2uR? - (Hy) - (V)J/L’-} (4.3)

b = R = MAL(4+1)/pR® - (V) (4.4)

with step size T. Since PR is only needed to determine the sign of ﬁ,
it does not matter that Eq.(4.4) will not conserve energy. At the end of
each time step py can be set equal to | times R computed from Eq.(4.3).
An application of these ideas to a collinear vibrator is presented in the
Appendix.

When the dimensionality n of the problem is reasonably large, the
major computational expense of this procedure is the evaluation of the
microscopic transition rates on the R.H.S. of Eq.(4.2), This would normally

Involve the numerical exponentiation of a matrix whose elements are

- 170, §|V(R)|n', 3/ A

When the potential has the form of Eq.(2,7), the time-consuming matrix
diagonalization needs to be performed only once. For a more general petential
Eq.(4.2) will require matrix manipulations whose difficulty varies like n3,
Computational expense can therefore be a serious problem for large n, but

the FPE dees not suffer from this ditficulty,

A e R A S R R TR
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B. Numerical Methods for the FPE

Solution of the FPE with a classical path assumption should be very
similar to the procedure outlined above for the ME, Internal state
probabilities are propagated, however, by a finite difference form of the FPE
rather than by Eq.(4.2). The FPE may be viewed as an approximation to the ME
in the limit that the discrete quantum states are closely spaced enough to
resemble a continuum, The possibly oscillatory transition rate matrix A 1is

also approximated by a swooth, continuous distribution, which is determined

by the first and second moments of A about the diagonal, Consequently, a

numerical solution of the FPE does not require the consideration of every

state, and the computational difficulty depends more on the number of degrees

N e o et it

of frecdom than the number of states, This can be a great advantage for
complex collision systems where the number of open channels 1is very large,
The FPE is to be solved on a region with a stepped boundary since
congervation of the total energy links the maximum allowed vibrational and
rotational levels, This area must then be filled with a mesh or grid of
discrete points at which the partial derivatives of the FPE sce replaced by
finite differences, It is also desirable to express the hsurdary conditions
in & numerical fashion that is independent of the particula:s functional form
of the coefficients, Since the FPE is derived from the ME, formulation uf

appropriate difference expressions and boundary conditions may be guided by a

comparison with the ME, It is, therefore, suggestive that the mesh be no
more closely spaced than the discrete quantum states. A typical (but
simplified) situation is shown in Figure 1 where each grid point is assumed

to lie on cne of the quantum states, This figure is analyzed below,
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Define x and y to be the continuous variables corresponding to the

vibrational energy and rotational energy, respectively. Now consider the

state 11 of Figure 1 and the eigut states surrounding it to be typical of a

point away from the boundaries, Since the FPE was obtained by an expansion

through second order of the ME, it .s natural that the continuous function

P(x,y) be obtained by quadratic interpolation. The expressions for the

partial derivatives are, therefore, obtained from the biquadratic Lagrange

interpolating polynomiallo

y) =
’ X 0%20 Yi0Y20 Yi0¥21 V20921

-

(- )(e-x) | P br-y) )y -y,) By, (y-y,)(y-y,) . P,v-y)y-v))

e
-

-

(x=x)(x-x) | P -y )y-y,) P (y-y)y-y,) P, G-y)-y)

X10%21 Y10Y20 Y10Y21 Y30Y2y

L

e [200oy)00y) 2 009)00y) 60y 6y ] s

X2 0%21 Y10¥20 Y10¥21 Y20721 .

where Pij - P(xi.yj) and Xy = %%y

The following expressions are thus obtained by differentiating Eq.(4.5):

oP U2 2 \

X10%20%21 3x X=X, X10P1 = Xy Poy - X% -%,,) Py (4.6a)
y=y,

X, oX,oX 2’p >~ 2 'x P. -%x P . +x P (4.6b)

10%20%21 37 x=x, 21%01 20811 10° 21 «99y
y=y,

o e W tea b

B vy e ety e ]
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Cj . 5-1
] C-21- 1
3 ;o
3 ) 3% e 22y’ p +xivip -x’ylP - xiylp '
! 10%20%21Y10Y20Y21 3@y x=x, X10Y10%22 T *21Y21700 T *21¥10%02 T *10Y21% 20
] y=y,
: 2 2
3 + %150 (Y10 " V21 P01 ¥ Ya1%p0(%y0 = %51 )Py
- x2 (y,q - Y, - yix, (x, -x, )P
10Y20\Y10 " V21 /%21 7 YioXa0'\X o " X921 /52
{
+ X,0Y 5010 %5 ) (Y10~ ¥, 0By, (4.7)
% A Jp d2p
pproximations for 5; and 5;7 are obtalned by switching x and y in

Eqs.(4.6a,b), 1If it is assumed that the microscopic transition rates
A(n,j;n',j';t) are zero for more than onz step off the diagonal, it can be
shown that the finite difference form of the FPE is then identical to the

appropriate ME in Eq.(4.8)

2p(n3t) =  A(mgn+1,3,6) [P(a+1,1,E) - B(n,5,t)]
. ) :
+ A(n’j;n' lnj’t) [P(“' l,J,C) - P(n»j:t)J H
j
+ A(n, j3n, 3+ 1;t) [P(n,1+ 1,t) - P(n,j,t)]

e

1

¥

+ A(n, 3;n, 5~ 1;t) [P(n.j~ 1,t) P(n,j,t)] (4.8)

f el s
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In this connection note that the D  coefficient involves microscopic transi-
tion rates that are at least two steps off the diagonal (ome in n and one in

The finite difference form of the FPE presented here therefore matches
the ME at n-1, n, and n+1 (and similarly for j). When n is equal to
zero, modified approximations to the partial derivatives which match the ME at

n, nt+i, and n+2 should be used. Appropriate revised expressions for

d 2
'B'-E' and ba xaPy are obtained by evaluating the derivatives of Eq.(4.5) along

the left edge

oF -

2
X10%20%21  2x X=X, 'xz1(x10+xzo)P(x=xo’Y) " X0 P(xzxz,y)
Yy
X0 P(x-xl,y) (k.9a)
X X 2 a‘xz[zP--zP--(y~y)P:|
0%20%21710¥207 21 3y [ x=x, 20 LY10%12 T Y2150 T Y20V TV
y=y,

‘-yw 22 yzx 20 ~ Yy N n)PnJ

3).

2
- x,, (x +xz°) [ym Po2 " YaiPoo - yzo(yxo 'yzx)Pox.] (4.9%)

21 10

e case j=0 {8 treated by analog, ..°d at the corner point 0O

3% o 2 [ 2 L2 . J
0%20%217106720721 Aoy | x=x%, %20 yzopu yxopxz y21(yl0+y20)P10
Y=Y,

2 2 2
xlO [yZOPZI y10P22 y21(y10+y20)P20]

. - - | ¢ .
% (%10 ¥ %50 )‘—yw Por 7 YioPo, y21(y1°+y2o)PooJ (h-10)
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o D TR 2 % th T

AATIN e T




C. 23 -

Suitable boundary couditions also need to be formulated for the upper

(stepped) edge, These must satisfy the requirements that all the probabilities

sum to unity while the flux ( %% or %5’) vanishes everywhere along the

upper border, This last condition can be fulfilled by assigning fictitious
probabilities to the layer of states immediately outside the region of
interest. It should be pointed out, however, that these non-zero closed
channel probabilities are only a mathematical construct with no physical
meaning, Referring to Figure 1, we thus set P°9=P°8, P,o=P,s P,o=P g

P etc. The above boundary conditions wili still not insure conserva-

=P

28 18’

tion of probability; this can be accomplished by renormalizing the ind{vidual
probabilities at each step in time, It is easy to sece that the procedure

outlined here is consistent with a statistical solutionm, i.e.,

P(n,j,t) = 1/(number of open states)

Leakage (dissociation) can also be allowed if the fluxes through part of the
upper boundary are different from zero (see paper I).
Reference to Figure 1l also reveals that the zero flux condition requires

P =P

,2%Pa1 and P,s=P,,=P,,=P,. It should be recalled that only open states

are included in these calculations, and probabilities along the upper boundary
may, therefore, be unreliable, This is a common situation with any finite

basis set calculation, In the present case no difficulty should be

encountered since the stochastic theory is developed for large systems where

the upper border is likely to be far from the region of interest. In other words,
most problems will be concerned with behavior in the lower left side of

Figure 1 and the presence of the upper boundary will frequently not be sensed,

T et K e U O ALAN WL
Syt N e, Lardens SV .
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In view of the above, it is eas{ly seen that propagating in time the

3 probability of being i{n any specific quantum state by means of the FPE requires
only the surrounding block of nine states. Thus the numerical effort of
computing each "trajectory" for this two-dimensional problem goes like 9n,

g More generally the dependence would be n X 3N (n 1is the number of states
and N 1is the number of degrees of freedom). Numerical computation of the

FPE, like classical mechanical methods, depends more on the number of degrees

of freedom than the number of quantum states., This should be a tremendous
advantage when n 1is very large, as it is for many problems of interest., In
the limit of many states, the FPE may also be treated as an exact partial
differential equation rather than as a smoothed approximation to the ME., The
FPE can thus be solved with a coarser mesh, resulting in additional savings in
computational labgr.

' Considerations bearing on the choice of the time steps T were discussed
in Section II.A; for tbz FPE the numerical stability of the difference equations

should also be taken into account. We wish to apply the von Neumann stability

criterion11 to the FPE, Assume I’(xn,ym,t) has the form

P(xn,vn,t) = exp(inf) exp(imep) exp(iAt)

where 6, ¢, and A\ are some numbers. The differeuce equations are then
presumed stable 1f exp(LiAt) is a decreasing exponential for all real 8
and @. Applying this to the atom-vibrotor FPE yields the following

inequality:12

Xy 0%y1Y10Y21 2 {\_xzo(xn “X) TR, - zxonBz_] Y10Y21

+ Lyzo(yn Y10 TG = 2¥5q "'CzJ Xyo¥yy + 2(%y, %00 (y,, ’yxo)TD} (4.11)

| PR
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where the indices 0, 1, 2 stand for n-1, n, n + 1, and similar indexing applies
to j. The maximum value of T allowed by Eq.{4.11) is thus a simple functien

of the FPE coefiicients.

If the interaction is weak, Eq.(4.l1) can be readily compared with the
previous prescription, Expanding the exponential time propagator and assuming

& tridiagonal potential matrix gives

ln-rﬂl <1
2
TAMm Rt INe) > ) RV el and |j-~3'] <1
?
0 otherwise

Inserting this into Eq.(4.1l) yields

- 2 2 2 2 q=1/2
T < “L Vagmensh ¥ Wagno gl * Wagnged * Magingad ]

which 1s similar to the physical criterion presented in Eq.(2.5).
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V. CONCLUSION

In this paper we have formulated additional practical procedures for

dealing with the stochastic equations presented in I. Molecular collisions

frequently involve relatively massive particles so that the translational

degree of freedom may be reasonably treated as following a classical trajectory.
We have presented a formalism in which the translational degree of freedom is
described by classical mechanics while the internal states are propagated by

a quantun stochastic equation of motion. Considering the simplicity of the
stochastic equations for the internal modes, this would seem to be an
attractive conceptual model for molecular collisions. Indeed, useful qualita-

tive information can be gaired from a knowledge of the FPE coefficients, even

without solving the equation, since these coefficients control the effective
cpllisional coupling,

There are numerous techniques for calculating collisional information,
and each has its own realm of applicability. Previous methcds have generally
proved inadequate for dealing with the scattering of relatively complex
particles, For many systems of interest, the number of open channels n 1is
too large for a fully quantal close coupling or effective Hamiltonian calcula-

tion to be practical. The expense of performing completely classical trajec-

e

tory studies depends more on the number of internal degrees of freedom N

s et

AT TAA DA NN pJEXDT Wiy

than the number of states. They have the serious disadvantage, however, that

all quantum effects are lost, Classical S-matrix methods13 combinc quant'm

interference effects with the ease of computing classical trajectories. Even

g v e,

with the use of effective Hamiltonians,9 there may still be too many degrees
of freedom for a classical S-matrix calculation to be feasible for many

collision problems. It is hoped that the FPE, as formulated in this work,




* Ca27 -

will permit reasonable and practical scattering calculations for very complex
collisisa systems.

Finally, the FPE is a type of partial differential equation which has
been extensively studied. It was shown in I how a knowledge of the FPE
coefficients and the associated boundary conditions could lead to reasomable
qualitative predictions about the behavior of an inelastic collision. This
paper presents a practical ethod for proceeding directly from the interaction
potential tc the coefficients of the FPE. These could then be used for quali-
tative interpretation or as input into numerical calculations., It is therefore
hoped that a reasonably direct connection can be made between the Hamiltonian

of a system and the outcome of an inelastic collision,

I
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APPENDIX: CALCULATTIONS FOR THE COLLINEAR VIBRATIONAL
EXCITATION OF A MODEL He-H, SYSTEM

The collinear collision of an atom with a diatomic harmonic oscillator
has been used frequently as a test case for various approximate methods.
Calculations including certain simplifying assumptions were presented in I.
When these additional approximations are removed, the solutions of the ME can
be directly compared to "exact" quantum resrlés,14 and this is dome below.

The collisicn system was described in I; as before the interaction
potential is taken to be an exponentfal repulsion between the atom and the
near end of the diatom. In the reduced units of Ref. l4a (except that the

unit of energy is hw not Aw/2), the Hamiltonian is
E = Hhe = P;/Zm + Hy/hw+ V, exp(-oR) exp (ox) (a.1)

where Hj 1s the vibrational energy of the oscillator, x is the reduced
displacemeut of the oscillator from equilibrium, R is the reduced transla-

tional coordinate, and P_ 1is its conjugate momentum, Since the Hamiltonian

R
14b
is invariant to the transformation

R =» R+ &

v, may be arbitrarily set equal to E,

The finite difference form of the ME is

B (th1) = ) Alamt) B () (a.2)

m

|
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where T 1s in units of w”!and A”(n,m,t) = 7 A(n,m,t) + By with

! Aln,m,t) = |(n| exp[LTE exp(-aR) exp(ox)] |m) |2 (A.3)

! The matrix elements of exp(ax) are

(nfexp(o x)|m) = (&%)1/2 (a 271/2)"R exp(a2/4)L:-n(-c¥2/2) (A.4)

m
for m>n (Ln(x) is the associated Laguerre polynomial). Given values of

T and I, the rates in Eq.(A.,3) are then conveniently obtained by

numerically exponentiating the matrix whose n,m~th element is
17TE exp(~aR) (n| exp(ax) |m)

The ME was solved by the procedure outlined in Section IV,A, A fifth
order, varisble step size Adams~Moulton predictor-corrector algorithm15 was
used to compute the classical trajectory for the R degree of freedom, At

each step energy was forced to be conserved by setting

. X 1/2

R(t) = sign (PR) X {2[E - (Holhu)) - E exp(-aR) (exp(ax))J/m} (A.5)
while PR was predicted by integrating

éR = + aEexp(-aR) (exp{ax)) (A.6)

y
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from t to t+7T (cf, Eqs.(4.3),(4.4)). The expectation values in these

equations are given by

4,/ hw) = 2 (n+1/2) p_(t)
n
(exp(ax)) = ) [F OV E(E) (nfexp(ax)|m

n,m

Since PR is only needed for determining the sign of ﬁ, it does not natter
that vepeated application of Eq.(A.6) will not conserve the total energy. At
the begiun‘ag and end of each step, PR/m was set equal to R computed from

Eq.(A.5).

' Each trajectory is started in sore initial state n with R set equal
to some large value outside the range of the potential, The time steps T

should be given by (cf. Eq.(2.5))

we) = Y ) {Eew[-er@][ T -t [wepex w7 @

n

when in the strong interaction region. This equation is not applicable for
large R where the Interaction is weak and it predicts steps much too large,
As a practical matter then the time step at the start of the trajectory was
given some value To? just larger than the estimated minimum time from
Eq.{(A.7). This was done to insurs that the strong interaction region was not
bypassed in the integration. When Eq.(A.7) predicted a smaller value than

To’ this smaller value was used,
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Calculations were performed16 for the parameter se’: m=2/3, o =0.314
at E=8.0; and for m=2/3, ®=0.30 at E=10.0. The two values of «
were necessary because of differences i1 the calculations of Refs. (14a) and
(14b). Results are plotted in Figures 2 and 3 along with the corresponding
quantum values. It may be seen that the stochastic curves seem to represent

the quantum mechanical transition probabilities with the oscillations averaged
out. This result is not surprising in view of the removal of phase interfer-
ences in the stochastic thecry. It should also be pointed out that the col-
linear harmonic oscillator model apparently exhibits an anomalously large
amount of oscillation. Indeed quantum calculatio.« for a Morse oscillator

1bb.

show much less of this kind of structure.

Calculations were also carried out at energies below E =8, However,
these results were in generally poor agreement with the quantum values for E
less than 6,0, This is not unexpected since the stochastic theory should be
best where there are a large number of strongly coupled states,

The procedure used here for conserving enerszy 10 longer guarantees the

\
satisfaction of microscopic reversibility (i.g., P (E)y = P (E)}.
27N

n,~n,
However £cz classically allowed tramsitions, the probabilities for excitation
ané deexcitation were still in reasonable agreement, In contrast, the
probability of deexcitation is much smaller (and more realistic than the
excitation probabilities) when the transitions were classically forbidden.

The origin of this phenomenon is unclear.
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Figure Captions

Figure 1.
A set of mesh points for the solution of an atom-vibrator FPE. The

equation is to be solved in the shaded region while the layer of closed
states outside of the upper edge is used to formulate the boundary condi-
tions. The number of states and their spacings are intended for illustra-
tive purposes only and should not be construed to represent any real system.
The continuous variables x and y correspond to the vibrational energy and

rotational energy, respectively,

Figure 2.
Plot of trangition probabilities from initial states n, as a function

of final state n (Pno -+ n) for E = 8, These are for the collinear oscillator

problem with @ = 0.714 and m = 2/3. The solid lines connect the quantum

values of Clark and Dickinsonlhb while the open circles are the stochastic

results of this work.

Figure 3.

The same as Figure 2 for E = 10 except that & = 0.30. Quantum results
lha.

are those of Secrest and Johnson
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